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dehydroalanine will occur to the same extent as with 
dehydroalanine. Yet, the possibility should not be ov- 
erlooked. Further work is needed to assess the role and 
behavior of substituted threonyl residues in processed high 
protein foods. 
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Extraction of Important Molecular Features of Musk Compounds Using Pattern 
Recognition Techniques 

William E. Brugger and Peter C. Jurs* 

The relationships between molecular structure and the musk odor quality were investigated using pattern 
recognition techniques. A data set consisting of 60 musk odorants and 240 nonmusk compounds were 
coded with computer generated structural descriptors and then analyzed using a linear learning machine. 
After determining that the data set was linearly separable, a subset of 13 descriptors was identified and 
subsequently employed to predict the odor quality of nine, previously unused, musk odorants: all were 
correctly classified. The results of this work demonstrated the usefulness of pattern recognition techniques 
for studying structure-activity relationships of oflactory stimuli and elucidated some structural parameters 
common among musk odorants. 

The perception of odors occurs in humans when airborne 
molecules of a volatile substance interact with some type 

of receptors in the olfactory region of the nose. Although 
the detailed mechanism of these interactions as well as the 
composition of the receptors remain unknown, several 
theories have been proposed which attempt to correlate 
different molecular properties with the perceived odor 
quality of a substance. For example, Wright (1954) 
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suggested that odor quality could be predicted on the basis 
of low-energy molecular vibrations occurring below 600 
cm-’. Good correlations were found in a study of sub- 
stances with nitrobenzene like odor (Wright and Serenius, 
1954) as well as in a study of musk odorants (Wright and 
Burgess, 1969). On the other hand, Amoore (1970) has 
reported that molecular shape, size, and electronic nature 
of a molecule are correlated to odor quality. Likewise, 
intermolecular interaction forces (Dravnieks and Laffort, 
1972), molecular profiles (Beets, 1957), and functional 
groups in molecules (Henning, 1915; Brower and Schafer, 
1975) have all been found to be related to some odor 
qualities. Unfortunately, none of these molecular pa- 
rameters alone can predict the odor quality of a large 
collection of olfactory stimuli. 

Nevertheless, the possibility exists that a collection of 
several different molecular parameters can account for 
odor quality. Such an approach was taken by Schiffman 
(1974) who used multidimensional scaling techniques and 
a newly developed weighting procedure to reproduce an 
odor space of 39 odorants using 25 physicochemical pa- 
rameters. A correlation of 0.76 was found between the 
calculated and experimentally determined odor spaces. In 
another study, Dravnieks (1974) used 14 structural features 
and multiple linear regression to determine linear equa- 
tions which would f i t  measured intensity, threshold, and 
odor quality data. Again, good correlations were found for 
the molecules used in this study. In a more recent study, 
the Hansch approach, which was developed for application 
to structure-activity relationship studies in medicinal 
chemistry, was used by Boelens (1976) to study compounds 
with bitter almond and musk odors. Using only the 1- 
octanol/water partition coefficients, gas chromatographic 
retention times, and molecular shape and volume pa- 
rameters of the odorant molecules, good regression 
equations were found for the 14 compounds regressed in 
each odor category. Of the parameters tested, the partition 
coefficients were found to be the most important in each 
study. 

The ability to obtain reproducible and relatively error 
free odor property measurements from human observers 
on a large number of chemical compounds is a major 
problem in olfactory research. Consequently, any attempt 
to f i t  quantitative data of this nature is limited by the 
inherent error. Therefore, until methods are developed 
to obtain good quantitative olfactory data, studies using 
regression analysis and other parametric methods will be 
restricted by this limitation. 

Although a large amount of qualitative data exists on 
a large number of olfactory stimulants, studies of rela- 
tionships between molecular structure and odor quality 
have been done only on limited data set using simple 
correlation techniques with a few variables. One factor 
limiting the investigations of qualitative data has been the 
lack of techniques for handling data of this type. In this 
paper, the usefulness of pattern recognition techniques for 
investigating molecular parameters which can predict odor 
quality will be demonstrated. 

Pattern recognition involves the perception and rec- 
ognition of significant features or attributes which can 
categorize input data into identifiable classes. In olfactory 
research, the specific objective of using pattern recognition 
is to find “common properties” which are shared by all 
members of a particular class of odorants and which can 
serve to classify a new compound into an odor class with 
similar properties. 

Pattern recognition techniques are well established with 
initial research efforts dating back into the early 1950’s 

when computer technology started its growth. Since then, 
these techniques have grown and expanded into several 
fields of application including computer and information 
science, statistics, biology, physics, and medicine. Pattern 
recognition has been applied to a large variety of chemical 
problems (see reviews: Jurs and Isenhour, 1975; Isenhour 
et al., 1974; and Kowalski, 1975) including applications to 
structure-activity relationships in pharmacology by Hiller 
et al. (1973), Chu et al. (1975), and Stuper and Jurs (1975). 

Pattern recognition techniques are uniquely suited for 
doing qualitative structure-activity relationship studies 
because of various characteristics of the procedures. First, 
heuristic methods are available which assume no math- 
ematical model, but rather relationships are sought which 
provide definitions of similarity between diverse groups 
of data. Pattern recognition techniques are also able to 
deal with high-dimensional data where more than three 
measurements are used to describe each object or event. 
Furthermore, pattern recognition techniques can handle 
data in which the relationships are discontinuous as well 
as multisource data where each measurement can be the 
result of an independent experiment. This attribute is very 
important since structure-activity relationship studies 
involve data of this type. Finally, techniques are available 
for selecting important features from a large set of pa- 
rameters. Thus, studies can be done on systems where the 
exact relationships are not fully understood. 

The purpose of this paper is to report our investigation 
into the applicability of pattern recognition techniques for 
performing qualitative structure-activity relationship 
studies of olfactory stimuli as well as to determine 
structural features which can be used to predict musk 
odorants. The premises for applying pattern recognition 
to this type of study are: (1) molecular structure and odor 
quality are related, (2) the structure of a compound can 
be adequately represented by a set of molecular de- 
scriptors, (3) a relationship can be discovered between the 
structure’s molecular descriptors and their odor quality 
by applying pattern recognition analysis to a set of tested 
compounds, and (4) any relations discovered can be ex- 
trapolated to predict the odor quality of untested com- 
pounds. 
PROCEDURES 

The procedures for doing any computer aided struc- 
ture-activity relationship study can be broken down into 
the following general steps: (1) identify the data set and 
transform the compound’s structural diagrams into 
computer compatible files, (2) generate molecular de- 
scriptors from the structures for each data set member, 
and (3) analyze the descriptors by searching for any re- 
lationships. Although there are several different ways to 
execute the above steps, the following discussion will 
describe only the procedures used in this study of musk 
odorants. 

The class of compounds commonly referred to as musks 
was chosen for this initial study primarily because musk 
is a characteristic odor quality which perfumers rarely 
confuse with other odor qualities. Therefore, a data set 
composed of this class of odorants should be relatively free 
of misclassified compounds. Such a well-characterized data 
set is important for providing a fair test of the capabilities 
of pattern recognition techniques for performing struc- 
ture-activity relationship studies in olfaction. However, 
this factor was not the only one to play a role in the se- 
lection of this class of compounds. 

In recent years the perfume manufacturers have done 
considerable research in developing synthetic musk 
odorants to replace the diminishing supply of natural musk 
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odorants. Consequently, a large amount of information 
on musk odorants exists (e.g., Beets, 1973; Theimer and 
Davies, 1967; and Beets, 1971). This is not true for any 
other major class of odorants. Furthermore, this class of 
compounds is structurally interesting since it contains a 
variety of different structural types including some 
steroids. In general, the structure-activity relationship 
study of musk odorants using pattern recognition tech- 
niques presented itself as a challenging problem with a 
high probability of success. 

For this study, a data set consisting of 300 unique 
compounds was obtained from the list of odorants given 
by Amoore (1970). Sixty of these compounds were musk 
odorants and included 23 macrocyclic, 19 polynitro- 
benzenes, 11 steroids, 5 y-butyrolactones plus two other 
structural types. Although 16 of the musk compounds 
were classified as weak musks or as having other odor 
overtones, enough strong musks were present to assure a 
fair representation of musk odorants. 

To represent the nonmusk class of odorants, 240 
compounds were randomly selected from the other odor 
categories given by Amoore (1970). The nonmusk class 
included 49 camphoraceous, 44 floral, 32 ethereal, 41 mint, 
51 pungent, and 23 putrid compounds. In this nonmusk 
class, a large number of different functional group types 
as well as structural types were present to assure a good 
representation of the nonmusk class. 

The structures of these 300 compounds served as the 
input to a computerized pattern recognition system called 
ADAPT (see Stuper and Jurs, 1976, for a complete de- 
scription of the system). The two-dimensional repre- 
sentation of these compounds were encoded by drawing 
them on a graphics display terminal with an interactive 
program (cf. Brugger and Jurs, 19751, which converted the 
graphical representation of the structures into computer 
compatible connection tables. The set of connection tables 
for the 300 compounds were then stored on the system’s 
disc files and were subsequently used to generate molecular 
descriptors. 

Fragment, substructure, and geometric descriptors were 
all employed in this study of musk odorants. Since 
Brugger et al. (1976) contains a detailed discussion of these 
descriptor types as well as the methods employed in 
calculating them, only a brief introduction to each de- 
scriptor type will be presented here. 

Any chemical structure can be broken down into its 
basic atom and bond components which are called 
“fragment” descriptors. Although these descriptors do not 
contain any structural information, they do reflect the 
chemical nature of the molecule. The total number of 
atoms, bonds, carbon atoms, oxygen atoms, nitrogen atoms, 
single bonds, double bonds, aromatic bonds, and a 
weighted summation of the four basic bond types were all 
generated for the 300 members of the musk data set. 

Substructure descriptors were generated by searching 
the connection tables of the molecular structures for the 
presence of functional groups and other explicitly defined 
larger atom and bond fragments. These descriptors 
contain information about the compounds’ chemical 
functionality and some structural information which was 
lost in the formation of fragment descriptors. Fifty-one 
different substructure descriptors were generated for this 
study. 

In order to generate geometric descriptors, three-di- 
mensional structures of the compounds are required. Since 
x-ray data was incomplete for the data set, and measuring 
space filling models constructed by hand would have been 
too tedious and inaccurate, a computer program was 

implemented to calculate low-strain, three-dimensional 
chemical structures. In this program a molecule is viewed 
as a collection of spherical atoms held together by a simple 
harmonic or elastic forces which are defined by a potential 
energy function. The independent variables of this 
function are the three-dimensional coordinates of the 
atoms in the molecule. By minimizing this function, a 
strain-free model of the molecule is obtained. From each 
molecule’s coordinate matrix the structure’s three principal 
moments of rotation ( X  = longest, Y = intermediate, Z 
= shortest), three ratios of the moments ( X / Y ,  X / Z ,  and 
Y / Z ) ,  and the molecular volume can be calculated. All 
seven of these geometric descriptors were generated for all 
members of this data set. 

Descriptors originating from experimental data were not 
included for two reasons: (1) obtaining this type of in- 
formation from the literature for a large and diverse data 
set is extremely difficult if not impossible; and (2) the 
possibility of using any classifier developed in this study 
as a prescreen for new odorants would be ruled out since 
the compounds would have to be synthesized to obtain the 
data. Therefore, only the computer derived molecular 
descriptors mentioned previously were used in this study. 

Since each descriptor has its own origin, scale, range, 
mean, and distribution of values, some form of prepro- 
cessing was required to alleviate any potential scaling 
problems. In this study the variables were standardized 
by adjusting the means to zero and the standard deviations 
to unit for each descriptor over all of the data set members. 

The descriptors were subsequently combined into 
pattern vectors with the ith compound being represented 
by the vector: Xi = (xl, x q ,  ..., x,, x,+J where n equals the 
number of descriptors chosen to describe the compounds. 
Each component of the vector represents one observation 
or measurement. For example, x1 could be the molecular 
weight of the compound, x q  could be the molecular volume, 
and x, could be the number of oxygen atoms in the 
compound. The n + 1 component of the vectors is a 
constant value added to all the vectors for computational 
convenience during the analysis of the data. 

Data represented as vectors can be thought of as either 
points in an n-dimensional Euclidean space or as vectors 
pointing from the origin to those points. There is a 
one-to-one correspondence between the points and the 
compounds represented in this way. Experience has shown 
that points representing patterns with common charac- 
teristics cluster in limited regions of the n-dimensional 
space. Thus, one might expect the points representing 
compounds that are musks to cluster in one region of the 
space and the nonmusk compounds to cluster elsewhere. 
A way to investigate the structure of the set of points is 
to separate the clusters from one another by decision 
surfaces, with the simplest surface being an n-dimensional 
plane. Two clusters of points which can be completely 
separated by such a plane are said to be linearly separable. 

Any n-dimensional plane has associated with it a normal 
vector called here a weight vector. The weight vector 
consists of an ordered sequence of components which 
correspond with the components of the pattern vectors 
used to describe the data set. Any pattern vector can be 
classified with respect to a decision surface by taking the 
dot product of the pattern vector and the decision surface’s 
weight vector (W): 

s =  w * x =  WlX, f w2x2 f 

Since IWI and 1x1 are always positive, the angle between 
the vectors, 8, determines the sign of the dot product. For 

f wnxn f 
wn+,xn+i.l= I W I  i x i c o s e  
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patterns on one side of the plane, the dot product is always 
positive while the patterns on the opposite side have 
negative dot products. Therefore, any compound in the 
data set can be classified into one of the two classes by 
obtaining the sign of the dot product. 

The remaining problem in this analysis is finding useful 
decision surfaces. Although parametric methods, such as 
multivariate discriminant analysis, could be used to obtain 
decision functions, we selected the nonparametric linear 
learning machine from the area of pattern recognition 
analysis for this work. The linear learning machine de- 
velops an effective decision surface by using a training set 
of pattern vectors whose correct classification are known. 
The members of this training set are presented to the 
learning machine one a t  a time and the decision surface's 
weight vector, which has been arbitrarily initialized, is used 
to classify each compound in turn. When an incorrect 
classification is made, the weight vector is altered in such 
a manner that will correctly classify the missed compound. 
This process continues until all of the training set members 
are correctly classified. One method for altering the weight 
vector is to move the decision surface so that after cor- 
rection the misclassified vector is the distance on the 
correct side of the surface as it was previously on the 
incorrect side. The details of this procedure as well as 
other approaches can be found in Tou and Gonzalez (1974) 
or Nilsson (1965). 

Although the ultimate use of any decision surface de- 
veloped in the linear learning machine is to predict the 
class of an unknown compound, it can also be used to aid 
in the removal of unnecessary descriptors which might 
have been initially included into each pattern vector. 
Variance feature selection is a nonparametric method 
developed for use with the linear learning machine to 
accomplish this task. Given a linearly separable data set, 
the variance feature selection method can produce a list 
which ranks the descriptors under consideration according 
to importance. Using this list, unimportant descriptors 
can be removed until the minimal set, sufficient for 
separation, remains (cf. Zander et al., 1975). Thus, both 
a classifier and the intrinsic descriptors necessary for 
separation are obtained. 
RESULTS 

The initial test was to determine if a decision surface 
could be found to separate the 60 musk odorants from the 
other 240 compounds. Using the training procedure de- 
scribed above and the 68 descriptors generated for this 
study, a decision surface was found which correctly 
classified the entire data set. Knowing this, several studies 
were conducted to determine which of the 68 available 
descriptors were most important for the separation. 

Instead of using the variance feature selection method 
to reduce the initial 68 descriptors, it  was decided to test 
the geometric, fragment, and substructure descriptors 
individually as to their ability to separate the data set. In 
doing this, it was found that neither the fragment nor the 
geometric descriptors alone were able to completely 
separate the musks from the nonmusks. Even the com- 
bination of these descriptors was unsuccessful in finding 
a decision surface. However, it was found that only a few 
compounds were preventing linear separability. Using the 
seven geometric descriptors alone, only the ten compounds 
shown in Figure 1 were misclassified out of the entire data 
set. Upon the inclusion of the ten fragment descriptors 
into each pattern vector, only compounds a, b, and c in 
Figure 1 prevented linear separability. Since these three 
compounds have been characterized as weak musks, it was 
not surprising that they were confusing the linear learning 

a b C 

0 

d C f 

i i 

Figure 1. The ten compounds misclassified using only the seven 
geometric descriptors: (a) 2- bromo-Ctert-butyl-5-rnethoxyt~luene, 
(b) a-heptyl-y-butyrolactone, (c) phenylacetic acid, (d) y- 
octyl-y-butyrolactone, (e) cyclotetradecanone, (0 dodecamethylene 
carbonate, (g) dodecanedicarboxylic acid anhydride, (h) nor- 
hexahydrofarnesol, (i) diisoamyltrisulfide, (j) phosphorus acid ethyl 
ester bisdipropylamide. 

Table I. Distribution of the Data Set Members into 
Training and Prediction Sets 

Training sets Prediction sets Number sets 
generated Group Musks Nonmusks Musks Nonmusks 

A 50 200 10  40  20 
B 48 192  1 2  48 20 
c 45 180 15 60  20 
D 42 168  18 1 2  20 

machine and thus preventing linear separability. Instead 
of removing these compounds from the data set, it was 
decided to test more descriptors on the entire data set. 

When the 51 substructure descriptors were tested alone, 
a decision surface was found which correctly classified the 
entire data set. In order to have a measure of the pre- 
dictive ability of these descriptors, the data set was 
subdivided into a series of training and prediction sets. 
Four groups of 20 training and prediction sets each were 
generated from the initial data set of 300 compounds. The 
distribution of musk and nonmusk compounds for the 
training and prediction sets in each group is given in Table 
I. The selection of the individual compounds for each set 
was done randomly so that no training and prediction sets 
were identical. Each training set was used to develop a 
decision surface which was then used to classify the 
compounds in the prediction set. The compounds in the 
prediction set served as unknowns since they were not used 
to develop the decision surface which was subsequently 
used to classify them. By using the 20 randomly selected 
sets in each group, an average predictive ability can be 
calculated. Table I1 contains the results of the predictive 
ability studies using all 51 substructure descriptors. 

The training set which gave the highest predictive ability 
in each group using all 51 descriptors was subsequently 
used for feature selection. The number of substructure 
descriptors remaining after feature selection and their 
average predictive abilities for each group's training sets 
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Table 11. Predictive Ability Studies Using Only the  51 
Substructure Descriptors 

The 27 substructures found to be useful in the foregoing 
study were then combined with the ten fragment and seven 

Initial" Final Final no. geometric descriptors to form pattern vectors containing 
predictive predictive of 44 descriptors each. As in the substructure study, the 80 

Group ability ability descriptors training and prediction sets were again used to obtain an 
x 95.1 96.2 1 4  average predictive ability for each group. Feature selection 
B 94.6 95.3 15  was then carried out using the best training set in each 
C 94.6 95.8 1 6  group. The results of these predictive ability studies are 
D 94.6 95.1 1 4  given in Table IV. In each group about two-thirds of the 

" Fifty-one substructure descriptors used in each 
pattern vector. 

are also given in Table 11. In each case at least two-thirds 
of the initial 51 descriptors were removed during feature 
selection while the average predictive ability increased 
slightly. In all cases the entire data set was linearly se- 
parable with the reduced number of descriptors. In Table 
I11 a listing of the substructure descriptors remaining after 
feature selection for each group of training and prediction 
sets is given. The asterisks indicate the substructures 
which were used to obtain the final predictive abilities 
listed in Table 11. As can be seen, there is considerable 
overlap of descriptors retained from group to group with 
over one-third of these 27 descriptors being retained as 
important features in at least three-fourths of the groups. 
Since 24 of the 51 substructures were always excluded 
during the feature selection, it was assumed that they were 
not essential for the separation of this data set. Therefore, 
they were not employed in any of the subsequent studies. 

44 descriptors could be removedwhile maintaining a high 
predictive ability. Table V contains the list of descriptors 
retained during feature selection. (The substructure 
numbers in this table correspond to the index numbers 
used in Table 111.) As can be seen, some of the sub- 
structure descriptors found to be useful in the previous 
study were replaced by fragment and geometric descriptors 
with an increase of the predictive ability for each group 
resulting from these exchanges (compare results in Tables 
I1 and IV). 

Although the descriptors found to be useful for each 
group could have been used to predict the class designation 
of unknown odorants, a better method is to develop a 
classifier on the basis of the entire data set. When feature 
selection was performed on all 300 compounds, the 13 
descriptors listed in Table VI remained out of the initial 
44 descriptors. Although linear separability was still 
maintained when descriptors two and five in Table VI were 
removed, the predictive ability decreased for each group 
indicating a removal of some information (see last two 

Table 111. Substructure Descriptors Retained during Feature Selection 
Hydrogens in substructures 

Search" 

Hydrogens in substructures 

Search" Included in groups 
Substructure type A B C D  Substructure type A B C D  

Included in groups 

1. -CH, S * * * * 15. -(CH2)4- G * * * * * *  * *  2. "CHX G 
3. -CH2- G * * * * 16. C H , - ~ - C H ,  G 

4. -CH2- S * * * * 17. -CH,-O- G * * 

6. -OH S * * * 19. -(CH2),- S * 
7. "LC-CHC G * * *  20. -c- G * 

* * * *  
18. .&&. G 

5. -0- S * 
I II 

1: il 

I1 
8. ''c-c"' G * *  * 21. -(CH,),- G * 
9. -c- S * * * 22. -CH,-C- G 

II 

10. -6- S * * * 23. -0- G * 
I 1 

I1 ' 11. -CH2-CH, S * * 24. CH,-C-CH, S * 
12. EC=CHZCH" G * *  2 5. -C-CH3- G * i 

I 

I 

i 13. -C-CH- G * * 26. -CH2-C- G * 

14. -&-CH, G * * 27. -cH,-CH-CH, G * 
I " G = general search, Le., the substructure unit can appear anywhere in the molecule and a match will be made. S = 

specific search, Le., the substructure unit can be matched only with acyclic atoms. (=) is an aromatic bond type. 

* 

Table IV. Predictive Ability Studies Using the 44 Combined Descriptors 
Initial" Final Final no. 

-- 
predictive predictive of Finalb 13 1 1 c  

descriD tors descriptors G r o w  abilitv abilitv descriDtors 
A 95.3 96.6 
B 96.1 95.9 
C 95.6 96.4 
D 95.7 97.1 

16 
15 
15 
1 4  

97.5 96.4 
97.6 96.8 
96.8 96.6 
97.8 96.7 

a The 27 substructure descriptors plus the seven geometric and the ten fragment descriptors were included in each 
pattern vector. 
cept for numbers 2 and 5 were included in each pattern vector. 

All 1 3  descriptors listed in Table VI were used in each pattern vector. All descriptors in Table VI ex- 
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Table V. Descriptors Retained during Feature Selection 
of t h e  44 Combined Descriptors 

Included in groups 

Descrip t o P  A B C D  
1. 
2. 
3. 
4. 
5 .  
6. 
7.  
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17.  
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 

Number of oxygen atoms 
Substructure number 3 
Substructure number 9 
Substructure number 5 
X moment of rotation 
Number of single bonds 
Number of double bonds 
Substructure number 1 
Substructure number 8 
Substructure number 1 5  
Substructure number 27 
Number of aromatic bonds 
Substructure number 6 
Substructure number 1 8  
Substructure number 1 3  
Substructure number 23 
Y moment of rotation 
Number of carbon atoms 
Substructure number 2 
Substructure number 12  
Substructure number 21 
Substructure number 26 
Substructure number 25 
Substructure number 16  
Substructure number 17  
X moment /Z  moment 
Y moment /Z  moment 

* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

a The substructure numbers used in this table corre- 
spond t o  the index numbers in Table 111. 

Table VI. 
Selection Using the  Entire Data Set 
Classification 

13 Descriptors Remaining after Feature 

% correct DescriptoP -- 
1. 84.3 Total number of oxygen atoms/molecule 
2. 82.3 Total number of double bondslmolecule 
3. 80.0 Total  number of aromatic bonds/molecule 
4. 86.7 Longest principal moment of rotation 
5. 80.9 Shortest principal moment of rotation 

I 6. 80.0 I'(ZLYCHxCHL2 
I 

7. 80.0 CH,-C-CH, 

I 8. 86.0 'Z.L(~LCL2 
9. 90.3 -CH2- 

10. 80.7 -CH, 

11. 80.0 -c- 
12. 80.0 -0- 

13. 83.0 -CH- 
a (=) indicates an aromatic bond. 

I1 

I 

columns in Table IV). Included in Table VI are the 
predictive abilities for each descriptor alone to classify the 
entire data set. These percentages should be compared 
to 80% which would be obtained by classifying the entire 
data set as nonmusks. The best single predictor of this 
list of features was the methylene substructure (feature 
9, Table VI), which reflects the fact that macrocyclic musks 
contain a larger number of these substructure units. 

To further test the predictive ability of these descriptors 
listed in Table VI and the decision surface associated with 
them, nine previously unused musk odorants were tested 
in the classifier. The odorants, shown in Figure 2, were 
entered into the ADAPT system and pattern vectors 
incorporating only the best 13 descriptors were generated 
for each compound. After preprocessing, these nine un- 
knowns were classified as musk or nonmusk using the 

a 0% 

b 

C 

d e f 

g h 
i 

Figure  2. The nine musk compounds which were used as un- 
knowns to test the best classifier obtained from these studies: (a) 
musk 89, (b) celestolide, (c) versalide, (d) musk alpha, (e) moskene, 
(f) musk tibetine, (g) musk ambrette, (h) astratone, (i) musk 
ketone. 

discriminant function trained using the entire data set of 
300 odorants. All nine compounds were correctly classified 
as musk odorants. The correct classification of the five 
nitro musks and one macrocyclic musk in the data set of 
unknowns was expected since the training set contained 
structurally similar compounds. However, the correct 
prediction of the remaining three unknowns was most 
interesting since these were new structural types never 
used in training the discriminant function. Thus, the 
classifier was able to recognize new categories of musk 
odorants on the basis of a few molecular parameters which 
were derived from musk odorants of different structural 
types. Therefore, it appears that these parameters reflect 
the molecular properties which are common among musk 
odorants. 

DISCUSSION AND CONCLUSIONS 
Indeed, pattern recognition techniques can be used to 

extract important features from a large collection of pa- 
rameters for a given class which have a common property. 
Advantages of using pattern recognition techniques in- 
clude: it is suitable for multicomponent data, the 
methodology exists for feature extraction, multisource data 
can be used, and the progress being made in the study can 
easily be measured. 

Although musk odorants were the only compounds 
studied in this work, other groups of compounds which 
have the same characteristic odor could be studied in an 
analogous manner yielding a series of discriminant 
functions which could be used to predict the odor class of 
a new compound. By employing computer generated 
descriptors exclusively, as was done in this study, it would 
be possible to use these discriminant functions as pre- 
screens for new odorants proposed for synthesis. 

The ability of the fragments and geometric descriptors 
alone to classify all but three weak musks indicates that 
both information about the compound's structural shape 
as well as its chemical composition are necessary to 
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separate musk odorants from nonmusks. Therefore, it was 
not surprising that the substructure descriptors alone were 
able to linearly separate the entire data set since these 
descriptors encode both structural and chemical infor- 
mation. As would be expected, the best set of descriptors 
for predicting musk odorants was found to be a combi- 
nation of all three types of descriptors (see Table VI). 
Although these 13 descriptors were found to have the 
highest predictive ability and were able to correctly classify 
the nine unknown musks, they should not be considered 
the optimum set of descriptors for musk odorants since 
they were found through a heuristic search of a limited set 
of molecular descriptors. 

The results of these studies neither confirm nor disprove 
any theory of human olfaction since the descriptors found 
to be useful in this study could be interpreted as sub- 
stantiating any of the present theories. For example, the 
geometric descriptors could be used to reinforce Amoore’s 
molecular shape theory; whereas, the substructure de- 
scriptors could be used to substantiate Beets’ molecular 
profile theory. However, these results do indicate that 
several molecular parameters are necessary to predict the 
odor quality of odorants rather than a single parameter. 

Although the actual meaning of each molecular de- 
scriptor, found to be important in this study, is not clear, 
the fact that they do fall into two categories (i.e., chemical 
composition and geometric shape) indicates that there may 
be a two-step process involved in producing the musk odor. 
One hypothesis which can be made is that the chemical 
nature is measuring the ability of the compound to pass 
from the air phase to the site of interaction and that the 
geometric shape of the molecule determines how well it 
fits into a receptor site. However, more data is needed 
before this conjecture can receive adequate verification. 

In conclusion, these studies have demonstrated that 
pattern recognition techniques are well suited for finding 
invariant properties among a large data set of compounds 
which have the same odor quality. As for musk odorants, 
molecular shape seems to be an important factor for the 
accurate prediction of musks, but it is by no means the 
only factor. As was shown, a few molecular parameters 
are capable of producing a good classifier for predicting 
musk odorants. Although the correct classification of nine 
unknown compounds is not a comprehensive test of the 
predictive ability, it does give a strong indication that the 
descriptors used in the classifier are reflecting molecular 
properties common among musk odorants. The fact that 
three new structural types were recognized in the pre- 
diction study lends weight to this conclusion. Further 
prediction studies are planned for the future. 

Although musk odorants were the focus of this work, 
other odor qualities can be studied in a similar manner and 
will be the topic of later papers. By comparing the pa- 
rameters found to be useful in the different odorant class 

studies, trends may be found which may aid researchers 
in unlocking the mystery of olfaction. 
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